Original Article

Sleep, Sleepiness, and Behavior Problems in Children With Headache

Cendrine Bursztein, MA; Tamar Steinberg, MD; Avi Sadeh, DSc

Received Sept 21, 2005. Received revised Oct 5, 2005. Accepted for publication Nov 5, 2005.

From the Department of Psychology (Ms Bursztein and Dr Sadeh), Tel Aviv University, Tel Aviv, Israel, and Department of Neurology (Dr Steinberg), Schneider Children's Medical Center, Petah-Tikva, Israel.

Address correspondence to Dr Avi Sadeh, Department of Psychology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. Tel: 972-3-6400926; fax: 972-3-6409547; e-mail: sadeh@post.tau.ac.il.
ABSTRACT

The purpose of this study was to assess sleep, daytime sleepiness, and behavior problems in children suffering from headaches and in controls, with a special focus on the role of gender. A clinical group of 28 children with persistent headache complaints and a control group of 108 healthy children were included. Sleep was assessed by actigraphy and diaries. Behavior problems were assessed by parental reports. In comparison with the control group, the sleep quality of the clinical group was poorer and they complained more about excessive daytime sleepiness. Children suffering from headache showed higher levels of internalizing behavior problems. Gender was found to be a moderating factor for the relationships between headache and sleep. Compared with control girls, girls suffering from headaches had poorer sleep quality, whereas the opposite was true for the boys. The results highlight the importance of assessing sleep, daytime sleepiness, and psychologic adjustment in children complaining about headaches as an integral part of their routine assessment. (J Child Neurol 2006;21:1012–1019; DOI 10.2310/7010.2006.00239).

Sleep problems and headaches are among the most prevalent complaints presented to pediatricians and other child care professionals. Complaints about headaches are very prevalent during childhood.1–10 Depending on the definition of headache complaints, the prevalence reported in large-scale studies ranges between 10% and more than 50%.5,9–12 Gender differences have been reported in prevalence rates, with higher reported rates in girls after puberty onset.9,11,14 Interestingly, it has been reported that, over the years, a dramatic increase occurred in the reported prevalence of headaches in children.15 This change calls for better understanding of its underlying mechanisms.

When discussing headaches, it is important to emphasize that our focus is on primary headaches that exclude those related to a known organic source, such as tumor, elevated intracranial pressure, or head trauma. Primary headaches typically include two types: migraine and tension type.6,16–18 In children, migraines are reported at a rate of 2.7% at the age of 7 years and gradually escalate to 6.4% in boys and 14.8% in girls at the age of 14 years.17 The prevalence of sleep problems in children is estimated within the range of 15% to 30%.19–23 In addition to the reported and monitored sleep problems, as children approach adolescence, there is a significant increase in their complaints about insufficient sleep and daytime sleepiness and fatigue.24–27

The links between sleep disorders and headaches have been known for over a century from clinical work and research studies.6 Although a clear link between sleep and headaches has been established in adults, the clinical research in children has been very limited.28–31 Children who suffer from headache have a high rate of sleep difficulties, such as insufficient sleep, cosleeping with parents, difficulties falling asleep, anxiety related to sleep, restless sleep, night wakings, nightmares, and fatigue during the day.28–31 Furthermore, headaches have been linked to specific sleep disorders, such as somnambulism32 and snoring.33 In longitudinal research of the first 6 years of life, it has also been reported that sleep problems in early childhood predict headaches at school entry age.34

Bruni et al found no differences in the duration, frequency, or intensity of headaches in children with and without reported sleep difficulties.29 However, they did find a higher rate of sleep difficulties (8.13% vs 2.35% in the control group) in children suffering from headaches. These included shorter sleep, difficulty falling asleep, night wakings, and reported fatigue during the day. In addition, a recent study conducted in children aged 2 to 12 years found a correlation between the frequency, timing, length, and intensity of a migraine attack and sleep-related problems.28 Furthermore, in this study, migraines were found to be associated with less sleep, fear of falling asleep, and bedtime refusal in children.

In addition to the links between sleep problems and headaches in childhood, it is important to emphasize the potential adverse effects of each of these problems on the child’s functioning and well-being. Sleep disorders have been linked to compromised neurobehavioral functioning, increased rates of behavior problems, and psychopathology.35–41 Similarly, headaches have been associated with psychopathology in children.42–46 Interestingly, gender-related differences were found for the association between headaches and psychopathology.47 Girls suffering from internalizing disorders, such as anxiety and depression, showed higher rates of headaches compared with girls with no psychopathology; whereas in boys, headaches were linked to conduct (externalizing) disorders. It is also important to emphasize that both sleep disorders and headaches have been repeatedly associated with stress in children.8,25,48–53

Gender appears to be a key factor in headaches, sleep, and behavior problems. The prevalence of headaches appears to be significantly higher in girls, and the course of the disorders appears to diverge, with boys having higher recovery rates than girls.3,14,54–57 It has been suggested that maturational and sex differences in hormonal activity might play a role in the onset and evolution of headaches in children.56 Furthermore, boys and girls appear to differ in their perception of and coping with pain.56–60 In the behavioral domain, gender differences have been repeatedly demonstrated with regard to behavior problems and childhood psychopathology.67 It appears that during early childhood, there are no notable gender differences in the prevalence of behavior problems. During the preschool and elementary school years, boys appear to present with more behavior problems than girls (mostly externalizing disorders), with a shift toward predominance of psychopathology in girls (mostly
internalizing disorders) starting in adolescence. Gender appears to play a role in the evolution of sleep patterns. Although the literature on sleep, gender, and development is less consistent, there appear to be differentiated developmental trajectories for boys and girls in the evolution of sleep patterns.

In summary, headaches and sleep problems are very prominent health care issues in children. Links between primary headaches and sleep problems have been documented in the literature, as have associations between these two domains and behavior problems and child psychopathology. Gender appears to play a major role in the developmental trajectories in these domains. In the present study, we assessed sleep and behavior problems in children referred because of persistent headache complaints and in healthy controls.

METHOD

Participants

Twenty-eight children (17 girls and 11 boys), in the age range of 7 and 14 years, were recruited from the Outpatient Neurology Clinic in Schneider Children’s Medical Center, Petah-Tikva, Israel. These children were referred to the clinic because of reported persistent headaches. They were all assessed by a child neurologist who used the International Headache Society criteria for headache diagnosis. Specific diagnoses included migraine (in 15 children), tension-type headache (7), and mixed (6). The children and their parents signed an informed consent form explaining the purpose of the study and their rights to decline participation or withdraw at any point in time, without compromising the clinical services they were receiving.

The control group consisted of 108 children with no reported chronic health problems. These children were recruited from regular schools and participated in a study on normal development of sleep patterns in school-aged children.

The demographic variables of the two groups were compared, with no significant differences on any of the variables (Table 1). Most children in both samples came from middle- or upper-class families and were living with their two biologic parents.

| Table 1. Demographic Variables of the Children With Headache and Controls: Range, Mean ± SD, or Percentage of the Sample |
|---|---|---|---|
| **Sleep Variables** | **Control** | **Headache** | **Range** |
| Child’s age (yr) | 10.28 ± 1.62 | 10.39 ± 2.02 | 7–14 |
| Mother’s age (yr) | 40.01 ± 4.66 | 38.53 ± 5.12 | 28–53 |
| Father’s age (yr) | 42.94 ± 5.87 | 41.59 ± 5.70 | 24–68 |
| Mother’s education (yr) | 14.60 ± 2.93 | 13.68 ± 2.76 | 8–24 |
| Father’s education (yr) | 14.28 ± 3.64 | 14.58 ± 2.87 | 8–25 |
| No. of children in family | 3.15 ± 3.84 | 3.25 ± 1.71 | 1–8 |
| No. of rooms at home | 5.03 ± 1.20 | 5.04 ± 1.20 | 2–8 |
| Birth order of child (% of firstborns) | 38.14 | 46.43 |
| Sex (% of boys) | 39.29 | 50 |
| Parents employed full time (%) | 87.93 | 81.48 |
| Fathers | 46.55 | 42.86 |
| Mothers | 92.31 | 96.43 |

Procedure

The study was approved by the Helsinki Committee of Schneider Children’s Medical Center and by the Ethics Committee of the Psychology Department at Tel Aviv University. In the hospital, children and their parents were approached as they arrived for a clinical interview with a child neurologist and were offered participation in the study. After signing the informed consent forms, children and their parents were given a set of questionnaires and an actigraph. The children were asked to attach the actigraph to their nondominant wrist from bedtime to morning rise time for a period of 5 days and to complete the daily sleep logs. The children received a small gift and an actigraph chart describing their sleep. In the control group, the children and their parents completed a similar protocol coordinated through the school setting. All monitoring occurred during regular school days.

Measures

The measures included assessment of sleep by objective and subjective instruments and assessment of headaches and behavior problems.

Actigraphy

Activity monitoring (actigraphy) was used to assess sleep-wake patterns. Actigraphy has been established as a reliable and valid method for the naturalistic study of sleep in infants, children, and adults. Recent studies have also demonstrated good reliability of these actigraphic measures. The children were asked to attach the miniature actigraph (a stopwatch-like device, Mini Motionlogger, Ambulatory Monitoring Inc., Ardley, NY) to their nondominant wrist in the evening when preparing for sleep and to remove it in the morning. Sleep assessment was performed for five continuous nights during the week. The actigraphs collected data in 1-minute epochs and in amplifier setting 18, which is the standard mode for sleep-wake scoring. Actigraphic files were analyzed with the Actigraphic Scoring Analysis program for an IBM-compatible personal computer that provides validated sleep-wake measures.

Actigraphic sleep measures included (1) sleep onset time; (2) morning rise time; (3) the total time from sleep onset to morning awakening; (4) sleep time excluding all periods of wakefulness; (5) percentage of true sleep time (measure 4) from the total sleep period (measure 3); (6) the number of night wakings; and (7) the percentage of motionless sleep. In parallel to the actigraphic monitoring, the children completed a daily log on which they reported their subjective perception of sleep and reported if they suffered from headache during each specific monitored day.

Sleep Habit Questionnaire

The sleep habit questionnaire was developed and used mainly to assess daytime sleepiness and excessive daytime sleepiness. This 20-item Likert-type scale is completed by the child and provides one scale of excessive daytime sleepiness.

Child Behavior Problems

The Child Behavior Checklist was used to assess behavior problems as perceived by parents. It is a widely used instrument for assessing behavior problems with well-established psychometric properties. The Hebrew version of this instrument has been translated and validated in Israel.

RESULTS

Data analysis consisted of three stages: (1) comparison between the clinical and the control samples on sleep measures, (2)
comparison of sleep on nights with and without headaches within the clinical group, and (3) comparison of the clinical and control samples on the behavioral measures.

Comparison Between Clinical and Control Groups: Sleep and Sleepiness

Actigraphic sleep measures were averaged across the nights of monitoring. To test for group differences considering possible effects and interactions with gender, we used multivariate analysis of variance (ANOVA) with group (headache/control) and gender as independent variables, age as a covariate, and the six sleep measures derived from the actigraph device as dependent variables.

The analysis revealed differences in the sleep quality measures of children in the headache group compared with those in the control group (Table 2 and Figure 1). In comparison with the controls, children with headache had reduced percentages of motionless sleep, $F(1,131) = 4.46, P < .05$, and an earlier morning rise time, $F(1,131) = 8.24, P < .005$.

Significant group by gender interaction, $F(1,131) = 12.79, P < .05$, was found for some of the measures. Specifically, boys with headaches fell asleep earlier than boys with no headaches, whereas girls with headaches fell asleep later than girls with no headaches.

Another significant interaction between sample and gender was seen in the total sleep time, $F(1,131) = 10.51, P < .05$, and true sleep time, $F(1,131) = 8.13, P < .05$ (see Figure 1). In comparison with the control group, boys suffering from headaches slept more and spent more time in true sleep, whereas girls suffering from headaches slept less and spent less time in true sleep than girls in the control group.

In addition to the group differences on morning rise time, in the clinical group, an earlier rise time was significantly correlated with an increased subjective rating of the severity of the headache problem, $r(20) = .48, P < .05$.

On the excessive daytime sleepiness scale of the sleep habit questionnaire, the children in the clinical group rated themselves significantly higher than those in the control group, $F = 5.82, P < .05$. The specific statistically distinct items were “I sleep during daytime” ($F = 8.11, P < .01$), “I have difficulty getting up in the morning” ($F = 4.49, P < .05$), and “I suffer from chronic tiredness” ($F = 4.78, P < .05$), on which the clinical group received higher scores.

Table 2. Actigraphic Sleep Measures of Children With Headache and Controls: Means, Standard Deviations, and F Values

<table>
<thead>
<tr>
<th>Sleep Measures</th>
<th>$F(1,131)$</th>
<th>Control</th>
<th>Headache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep onset time (h)</td>
<td>2.27</td>
<td>22.29 ± 0.74</td>
<td>22.48 ± 0.98</td>
</tr>
<tr>
<td>Morning rise time (h)</td>
<td>4.46*</td>
<td>6.86 ± 0.35</td>
<td>7.18 ± 0.56</td>
</tr>
<tr>
<td>Sleep period (min)</td>
<td>1.33</td>
<td>514.4 ± 39.5</td>
<td>521.9 ± 41.3</td>
</tr>
<tr>
<td>True sleep time (min)</td>
<td>0.02</td>
<td>479.1 ± 39.7</td>
<td>485.3 ± 41.8</td>
</tr>
<tr>
<td>Sleep percentage</td>
<td>1.62</td>
<td>93.15 ± 3.84</td>
<td>93.91 ± 3.85</td>
</tr>
<tr>
<td>Night wakings (n)</td>
<td>1.77</td>
<td>1.98 ± 1.36</td>
<td>1.73 ± 1.3</td>
</tr>
<tr>
<td>Motionless sleep (%)</td>
<td>8.24**</td>
<td>68.52 ± 8.42</td>
<td>64.32 ± 11.11</td>
</tr>
</tbody>
</table>

*P < .05; **P < .005.

Figure 1. Comparison of actigraphic sleep measures between children suffering from headache and controls. Each panel represents a specific sleep measure (mean ± standard error).

Analysis of Sleep on Days With or Without Reported Headaches

From the 163 days documented in the clinical group, 66 days (40.5%) were reported as days with headache complaints. One child reported no headache on all days of the study and was
excluded from this analysis. To assess the daily impact of reported headaches, we calculated separate means for the sleep measures on the monitored nights with or without reported headache for each child in the clinical sample. We performed ANOVA for repeated measures with type (with or without reported headache) as the repeated measure and gender as the second independent variable. The analyses (Figure 2) revealed significant gender by type interactions on four actigraphic sleep measures, including quiet sleep, $F(1,21) = 8.39, P < .01$; sleep percentage, $F(1,21) = 4.54, P < .05$; and night wakings, $F(1,21) = 4.60, P < .05$. It appears that in comparison with nights with no reported pain, boys slept more poorly on nights with reported headaches, as manifested in a decreased sleep percentage and quiet sleep percentage and an increased number of night wakings. In contrast, in comparison with nights with no reported pain, girls slept better on nights with reported headaches, as reflected in an increased sleep percentage and a quiet sleep percentage and a reduced number of night wakings.

Comparison Between Clinical and Control Groups: Behavior Problems
Multivariate ANOVA with group, age, and gender was used to compare the clinical and control groups on the behavior problem scales on the Child Behavior Checklist (Figure 3). The Child Behavior Checklist’s headache item was removed from the analyses because of its specificity in defining the clinical group. Significant group, $F(9,118) = 7.40, P < .0001$, and gender, $F(9,118) = 2.53, P < .05$, differences were found on the multivariate ANOVA. Discrete ANOVA analyses for each of the subscales revealed significant differences on the total Child Behavior Checklist score, $F(1,126) = 8.26, P < .005$; the Internalizing factor, $F(1,126) = 19.45, P < .0001$; and the Attention $F(1,126) = 5.35, P < .05$, Withdrawal, $F(1,126) = 5.33, P < .05$, Somatic, $F(1,126) = 63.36, P < .0001$, and Anxiety-Depression, $F(1,126) = 5.67, P < .05$, subscales.

The number of reported episodes of headache during the day and night (based on the daily reports) was associated with an increased level of reported behavior problems. Children who reported more headache episodes were rated as having more attention problems, $r(27) = .64, P < .0005$; social problems, $r(27) = .57; P < .005$; social withdrawal, $r(27) = .50; P < .001$; and delinquency problems. $r(27) = .41, P < .05$.

DISCUSSION
The goal of the study was to assess sleep patterns and behavior problems associated with reported, persistent headaches in children. Special attention was given to the potential moderating role of gender.

Before addressing the findings, the limitations of this study should be emphasized. Although the distinction between different types of headaches is important, the subgroups were too small to enable powerful statistical analysis; therefore, the subgroups of migraine, tension-type headache, and mixed headache were treated as one clinical group.

Our data suggest that children with reported headaches have distinct sleep patterns and behavior problems. In comparison with their controls, children with headaches spent less time in quiet, motionless sleep and woke up significantly earlier in the morning. Furthermore, increased severity of the headache problem was significantly associated with an earlier morning rise time. These findings suggesting disruptions to normal sleep patterns in children with headaches are consistent with earlier findings based on parental reports26,29; however, they diverge
This consistent finding should alert clinicians to the internalizing factor. The most important to note here that emotion-focused coping has been found to be a less efficient coping strategy with pain in children suffering from headaches.

Comparing the findings from previous actigraphic studies, there is no indication for sleep disruptions in children with migraine.

These differences in line with the reports about daytime sleepiness, which were found to be significantly higher in the clinical group. These findings support earlier reports about increased sleepiness in children who suffer from headache. Gender appears to play a major role in moderating the links between headaches and migraine. In comparison with their controls, boys with headaches spent significantly less time in sleep, whereas the opposite trend was seen in girls. This finding is further supported by the findings from the comparison, within the clinical group, between nights with and without reported headaches. On nights with reported headaches, boys slept significantly better than on nights with no headaches, as manifested in their increased percentages of sleep and quiet sleep and reduced number of night wakings, whereas the opposite picture is seen in girls. To our knowledge, these are unique findings, obtained with objective measures in children suffering from recurrent headaches, and require further validation. Our interpretation is that girls and boys can differ in their coping strategies with stress in general and with headaches in particular. It has been demonstrated that coping strategies play a moderating role in the links between stress and sleep.

Figure 3. Comparison of differences between children with headache and controls on the Child Behavior Checklist scales. Scores represent the mean score on items of each specific scale. *Statistically significant group differences.

Moderating role in the links between stress and sleep. Our interpretation is that girls and boys can differ in their coping strategies with stress in general and with headaches in particular. It has been demonstrated that coping strategies play a moderating role in the links between stress and sleep.

An additional clinical issue that should be considered in children with headache is the possibility that these children have increased sleep needs. This possibility should be considered because these children report increased daytime sleepiness, although they do not sleep significantly less than their normal controls. This issue should be further explored scientifically but could be tested clinically by short trials of sleep extension.

Acknowledgments
We are thankful to Helene and Woolf Marmot for their support and Ornit Arbel and Jeri Hahn-Markowitz for their help in preparing the manuscript.

References
Nord-Trondelag Health Study (Head-HUNT-Youth), a large population-based epidemiological study. Cephalalgia 2004;24:373–379.

